57

Биссектрисы углов a и b при боковой стороне ab трапеции abcd пересекаются в точке f.…

21 мая 2023

Биссектрисы углов a и b при боковой стороне ab трапеции abcd пересекаются в точке f. Биссектрисы углов c и d при боковой стороне cd пересекаются в точкеg. Найдите fg, если средняя линия трапеции равна 21, боковые стороны-13 и 15. Пожалуйста помогите, срочно надо!

категория: геометрия

81

Я тут уже решал подобную задачу столько раз, что не помню, когда был первый. Точки пересечения биссектрис — это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры — ЧАСТЬ СРЕДНЕЙ ЛИНИИ. Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы «ОПИСАНА ВОКРУГ ОКРУЖНОСТИ», а у таких 4 угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. (Именно на это расстояние как бы раздвинуты вписаные окружности — пояснение такое. Еще вариант решения, по сути — такой же Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это — центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая — правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z — искомое расстояние. И есть 3 соотношения. z+x+y=b; z+(13-x)+(15-y)=aa+b) /2=21 Складываем и делим на 2. z=7 Еще вариант решения — проводим специальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть — с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 — z) и (15 — z), где z — ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее — см. Начало

Знаете ответ?

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...