75

В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что…

10 июня 2023

В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадь четырехугольника равна половине произведения егодиагоналей.

категория: геометрия

56

Если в четырехугольнике диагонали перпендикулярны, значит он делится ими на четыре прямоугольных треугольника и его площадб равна сумме площадей этих четырех треугольников. Площадь прямоугольного треугольника равна половине произведения его катетов. Следовательно, площадь нашего четырехугольника равна половине произведению его диагоналей. Пусть четырехугольник АВСД и точка пересечения взаимно перпендикулярных диагоналей О. Тогда площадь нашего четырехугольника S=0,5AO*BO+0,5OC*BO+0,5AO*OD+0,5OC*OD=0,5BO*(AO+OC)+0,5OD*(AO+OC)=(AO+OC)*(0,5BO+0,5OD)=AC*BD. Что и требовалось доказать.

Знаете ответ?

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...